Valence of Complex-valued Planar Harmonic Functions

نویسنده

  • GENEVRA NEUMANN
چکیده

The valence of a function f at a point w is the number of distinct, finite solutions to f(z) = w. Let f be a complex-valued harmonic function in an open set R ⊆ C. Let S denote the critical set of f and C(f) the global cluster set of f . We show that f(S)∪C(f) partitions the complex plane into regions of constant valence. We give some conditions such that f(S) ∪ C(f) has empty interior. We also show that a component R0 ⊆ R\f(f(S) ∪ C(f)) is a n0-fold covering of some component Ω0 ⊆ C\(f(S) ∪ C(f)). If Ω0 is simply connected, then f is univalent on R0. We explore conditions for combining adjacent components to form a larger region of univalence. Those results which hold for C functions on open sets in R are first stated in that form and then applied to the case of planar harmonic functions. If f is a light, harmonic function in the complex plane, we apply a structure theorem of Lyzzaik to gain information about the difference in valence between components of C\(f(S) ∪ C(f)) sharing a common boundary arc in f(S)\C(f).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Planar Harmonic Functions

Complex-valued harmonic functions that are univalent and sense-preserving in the open unit disk can be written in the form f = h+ g, where h and g are analytic in the open unit disk. The functions h and g are called the analytic and coanalytic parts of f , respectively. In this paper, we construct certain planar harmonic maps either by varying the coanalytic parts of harmonic functions that are...

متن کامل

A new subclass of harmonic mappings with positive coefficients

‎Complex-valued harmonic functions that are univalent and‎ ‎sense-preserving in the open unit disk $U$ can be written as form‎ ‎$f =h+bar{g}$‎, ‎where $h$ and $g$ are analytic in $U$‎. ‎In this paper‎, ‎we introduce the class $S_H^1(beta)$‎, ‎where $1<betaleq 2$‎, ‎and‎ ‎consisting of harmonic univalent function $f = h+bar{g}$‎, ‎where $h$ and $g$ are in the form‎ ‎$h(z) = z+sumlimits_{n=2}^inf...

متن کامل

Harmonic Functions on Planar and Almost Planar Graphs and Manifolds, via Circle Packings

The circle packing theorem is used to show that on any bounded valence transient planar graph there exists a non constant, harmonic, bounded, Dirichlet function. If P is a bounded circle packing in R 2 whose contacts graph is a bounded valence triangulation of a disk, then, with probability 1, the simple random walk on P converges to a limit point. Moreover, in this situation any continuous fun...

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

Weighted composition operators between Lipschitz algebras of complex-valued bounded functions

‎In this paper‎, ‎we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces‎, ‎not necessarily compact‎. ‎We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators‎. ‎We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004